Formation of Core-Shell Nanoparticles Composed of Magnetite and Samarium Oxide in Magnetospirillum magneticum Strain RSS-1
نویسندگان
چکیده
Magnetotactic bacteria (MTB) synthesize magnetosomes composed of membrane-enveloped magnetite (Fe3O4) or greigite (Fe3S4) particles in the cells. Recently, several studies have shown some possibilities of controlling the biomineralization process and altering the magnetic properties of magnetosomes by adding some transition metals to the culture media under various environmental conditions. Here, we successfully grow Magnetospirillum magneticum strain RSS-1, which are isolated from a freshwater environment, and find that synthesis of magnetosomes are encouraged in RSS-1 in the presence of samarium and that each core magnetic crystal composed of magnetite is covered with a thin layer of samarium oxide (Sm2O3). The present results show some possibilities of magnetic recovery of transition metals and synthesis of some novel structures composed of magnetic particles and transition metals utilizing MTB.
منابع مشابه
Core-shell nanoparticles for medical applications: effects of surfactant concentration on the characteristics and magnetic properties of magnetite-silica nanoparticles
Objective(s): The use of cationic surface-active agents (surfactant) in the synthesis of nanoparticles, with formation of micelle, can act as a template for the formation of meso-porous silica. Changes in the concentration of surfactants can affect the structures and properties of the resulting nanoparticles.Materials and Methods: Magnetite nanoparticles were prepared as cores using the c...
متن کاملFabrication of 2-Chloropyridine-Functionalized Fe3O4/Amino-Silane Core–Shell Nanoparticles
In this report, magnetic iron oxide nanoparticles were synthesized via coprecipitation of Fe2+ and Fe3+ with ammonium hydroxide, and the surface of synthesized nanoparticles was organically functionalized by commercially available amine coupling agent namely, 3-aminopropyl trimethoxysilane (APTS) by using well-known sol–gel method. Further reaction of the synthesized Fe3O4@APTS core-shell magne...
متن کاملBiotechnological application of nano-scale engineered bacterial magnetic particles
Magnetic particles have been studied with much interest with reference to many engineering applications. Much effort has been devoted to the preparation of nano-sized magnetite particles with well-controlled size and shape. Magnetic bacteria synthesize uniform and nano-sized magnetite particles enveloped by organic lipid membranes. This review discusses recent advances in bacterial magnetite pa...
متن کاملSurface Engineering of Iron Oxide Nanoparticles Isolated from Magnetospirillum Gryphiswaldense for Biochemical and Biomedical Applications
Superparamagnetic iron oxide nanoparticles with appropriate surface modification can be widely used in various applications including magnetic resonance imaging (MRI) diagnostic contrast agents, anticancer therapy using hyperthermia, magnetic drug targeting, protein and enzyme immobilization, cell labeling and separation or RNA and DNA purification. All these biochemical and biomedical applicat...
متن کاملSelf-assembled MmsF proteinosomes control magnetite nanoparticle formation in vitro.
Magnetotactic bacteria synthesize highly uniform intracellular magnetite nanoparticles through the action of several key biomineralization proteins. These proteins are present in a unique lipid-bound organelle (the magnetosome) that functions as a nanosized reactor in which the particle is formed. A master regulator protein of nanoparticle formation, magnetosome membrane specific F (MmsF), was ...
متن کامل